HVCMOS particle sensors are based on an innovative structure. These sensors can be manufactured in commercial semiconductor processes. High voltage is used to increase the sensor volume and improve time resolution, detection efficiency and radiation hardness.
Technology
HVCMOS sensors are our innovation at the ASIC Detector Laboratory (ADL) of IPE! They are pixelated sensors in CMOS technology using high voltage to increase the sensor volume and improve time resolution, detection efficiency and radiation hardness. HVCMOS sensors are suitable for the detection of single ionizing particles, although the detection of low energy photons is also possible. Applications include high energy physics, photon science, medicine, electron imaging, etc.
More information can also be found on the pages of the ASIC detector laboratory of the IPE.
Projects
Important applications for our sensors are high energy physics experiments.
ATLAS Experiment
We are developing HVCMOS sensors for the upgrade of the ATLAS experiment. ATLAS is one of the four main experiments at the Large Hadron Collider (LHC) at CERN. It is designed to exploit the full discovery potential and the enormous range of physical possibilities offered by the LHC. We believe that ATLAS and the other particle physics experiments could benefit from the use of HVCMOS sensors in terms of performance and construction costs.
The project will be carried out in several steps:
- Development of small area prototypes that meet the specifications regarding radiation tolerance, time resolution and detector efficiency.
- Development of large-area prototypes in the form of capacitively coupled pixel detectors (CCPDs) and monolithic detectors (HVMAPS)
- Design of a large scale prototype compatible with the ATLAS Upgrade Inner Tracker (ITk) Quad Module
Mu3e experiment
Mu3e is an experiment at the Paul Scherrer Institute (PIS, Villigen, Switzerland). Mu3e will utilize a high intensity muon beam to search for the decay of muons into three electrons. This decay is not observable according to the standard model of elementary particle physics, because it would imply the flavor violation in the charged lepton region. However, some theories beyond the Standard Model predict this decay. The Mu3e detector is built up of three monolithic HVCMOS sensor layers. The thickness of the sensor chips is only 50 microns and the total detector area will be more than one square meter. The experiment is currently being prepared in an international collaboration.
CLIC (Compact Linear Collider)
At KIT-ADL we develop HVCMOS sensors for future linear colliders, such as the Compact Linear Collider (CLIC) . Capacitively coupled pixel detectors (CCPDs) based on an HVCMOS sensor and a readout chip are investigated. The signal transmission from chip to chip is done by capacitive coupling.
Publications
Schimassek, R.; Andreazza, A.; Augustin, H.; Barbero, M.; Benoit, M.; Ehrler, F.; Iacobucci, G.; Meneses, A.; Pangaud, P.; Prathapan, M.; Schöning, A.; Vilella, E.; Weber, A.; Weber, M.; Wong, W.; Zhang, H.; Perić, I.
2021. Nuclear instruments & methods in physics research / A, 986, Art.-Nr.: 164812. doi:10.1016/j.nima.2020.164812
Blanco, R.; Leys, R.; Schlote-Holubek, K.; Becker, L.; Zapf, M.; Steck, P.; Gemmeke, H.; Ruiter, N. V.; Peric, I.
2021. Proceedings of the International Workshop on Medical Ultrasound Tomography: 14.-15. Oct. 2019, Wayne State University, Detroit, Michigan, USA. Ed.: C. Böhm; T. Hopp; N. Ruiter; N. Duric, 259–270, KIT Scientific Publishing. doi:10.5445/IR/1000136034
Augustin, H.; Berger, N.; Dittmeier, S.; Ehrler, F.; Grzesik, C.; Hammerich, J.; Herkert, A.; Huth, L.; Kröger, J.; Aeschbacher, F. M.; Perić, I.; Prathapan, M.; Schimassek, R.; Schöning, A.; Sorokin, I.; Weber, A.; Wiedner, D.; Zhang, H.; Zimmermann, M.
2019. Nuclear instruments & methods in physics research / A, 936, 681–683. doi:10.1016/j.nima.2018.09.095
Ehrler, F.; Benoit, M.; Dannheim, D.; Kiehn, M.; Nürnberg, A.; Perić, I.; Prathapan, M.; Schimassek, R.; Vanat, T.; Vicente, M.; Weber, A.; Zhang, H.
2019. Nuclear instruments & methods in physics research / A, 936, 654–656. doi:10.1016/j.nima.2018.08.069
Prathapan, M.; Benoit, M.; Casanova, R.; Dannheim, D.; Ehrler, F.; Kiehn, M.; Nürnberg, A.; Pangaud, P.; Schimassek, R.; Vilella, E.; Weber, A.; Wong, W.; Zhang, H.; Perić, I.
2019. Nuclear instruments & methods in physics research / A, 936, 389–391. doi:10.1016/j.nima.2018.11.022
Prathapan, M.; Barrillon, P.; Benoit, M.; Casanova, R.; Ehrler, F.; Pangaud, P.; Pusti, S.; Schimassek, R.; Vilella, E.; Weber, A.; Wong, W.; Zhang, H.; Perić, I.
2019. Topical Workshop on Electronics for Particle Physics (TWEPP2018) - Posters: 17-21 September, 2018, Antwerp, Belgium, Scuola Internazionale Superiore di Studi Avanzati (SISSA). doi:10.22323/1.343.0074
Schimassek, R.; Peric, I.
2019. DPG-Frühjahrstagung, Fachverband Teilchenphysik (2019), Aachen, Germany, March 25–29, 2019
Ehrler, F.; Peric, I.; Schimassek, R.
2018. DPG-Frühjahrstagung der Sektion Materie und Kosmos (SMuK 2018), Würzburg, Germany, March 19–23, 2018
Prathapan, M.; Zang, H.; Weber, A.; Peric, I.
2018. DPG-Frühjahrstagung der Sektion Materie und Kosmos (SMuK 2018), Würzburg, Germany, March 19–23, 2018
Blanco, R.; Zhang, H.; Krämer, C.; Ehrler, F.; Schimassek, R.; Mohr, R. C.; Figueras, E. V.; Messaoud, F. G.; Leys, R.; Prathapan, M.; Weber, A.; Perić, I.
2017. Journal of Instrumentation, 12 (04), Art. Nr. C04001. doi:10.1088/1748-0221/12/04/C04001
Perić, I.; Blanco, R.; Mohr, R. C.; Ehrler, F.; Messaoud, F. G.; Krämer, C.; Leys, R.; Prathapan, M.; Schimassek, R.; Schöning, A.; Figueras, E. V.; Weber, A.; Zhang, H.
2017. Journal of Instrumentation, 12 (2), C02030. doi:10.1088/1748-0221/12/02/C02030
Schimassek, R.; Ehrler, F.; Peric, I.
2016. IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), 2016, Article no: 8069903, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/NSSMIC.2016.8069903
Ehrler, F.; Peric, I.; Schimassek, R.
2016. IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), 2016, Article no: 8069901, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/NSSMIC.2016.8069901
Peric, I.; Ehrler, F.; Leys, R.; Blanco, R.
2015. Proceedings of the 14th IEEE Sensors 2015, Busan, South Korea, November 1-4, 2015. Hrsg.: H.G. Byun, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICSENS.2015.7370536
Perić, I.; Eber, R.; Ehrler, F.; Augustin, H.; Berger, N.; Dittmeier, S.; Graf, C.; Huth, L.; Perrevoort, A.-K.; Phillipp, R.; Repenning, J.; Bruch, D. vom; Wiedner, D.; Hirono, T.; Benoit, M.; Bilbao, J.; Risti, B.; Muenstermann, D.
2015. Journal of Instrumentation, 10 (5), Art.Nr. C05021. doi:10.1088/1748-0221/10/05/C05021